
Se siete in cerca di figure geometriche nuove, loghi intriganti o anche solo scacciapensieri geometrici, andate su Geogebra, disegnate un oggetto a caso, dategli un’espressione parametrica, attivate lo strumento “Mostra traccia”, avviate uno slider per il parametro e state a vedere cosa succede… (alzi la mano chi non usa Geogebra e non sa di cosa sto parlando!).
Ad esempio, dopo che in questo recente articolo mi ero occupata dell’equazione parametrica dell’ellisse di dato centro e assi, affascinata dal vedere come si muovono le coordinate e
del punto S scorrevole sull’ellisse, mi è venuto in mente di attivare lo strumento “Mostra traccia” (cliccare sull’oggetto per selezionarlo – poi pulsante destro del mouse – poi selezionare “Mostra traccia” nel menù che appare; salvo manutenzioni del programma, di solito funziona e molto bene). Naturalmente ho immortalato il risultato nel solito minivideo che qui presento
La figura che vien fuori dalla sovrapposizione delle tracce è ben nota e si chiama Astroide, è un tipico esempio di curva di inviluppo ovvero di curva formata – come in questo caso – da una famiglia di rette (non parallele tra di loro e non passanti tutte per uno stesso punto, ma in qualche altro modo legate da una relazione parametrica) che ne rappresentano le tangenti. In altre parole, la curva Astroide è tale che in ogni suo punto, la retta tangente alla curva contiene un segmento di quelli generati dal punto S variabile sull’ellisse, e viceversa ognuno dei segmenti
appartiene a una qualche retta tangente all’Astroide.
Per ottenere l’equazione parametrica dell’astroide in funzione del parametro s, è quindi sufficiente applicare la regola generale che permette di calcolare l’equazione della curva inviluppo conoscendo la famiglia delle rette tangenti, in funzione di un dato parametro.
Senza dare qui la dimostrazione, ricordiamo che tale regola prevede di mettere a sistema le due equazioni:
dove la prima equazione è l’espressione della famiglia di rette in funzione di x, y e s, scritta in forma implicita, mentre la seconda equazione rappresenta la derivata parziale rispetto al parametro s uguagliata a 0.
Nel nostro caso, ricordando l’espressione di x(S) e y(S) che abbiamo illustrato in questo articolo, chiamando a e b i semiassi maggiore e minore e considerando che il centro è nell’origine, abbiamo:
Per trovare l’equazione parametrica della generica retta tangente, osservo innanzitutto che il segmento è sempre inclinato rispetto all’asse x di un angolo supplementare rispetto all’angolo s (e incidentalmente, anche se questo dato non ci servirà, notiamo che la lunghezza di
, in corrispondenza di ogni punto S è pari al raggio variabile OS dell’ellisse), come si può verificare facilmente con l’aiuto della figura:

Questo significa che il coefficiente angolare di sarà in ogni punto pari a
La generica retta della famiglia con parametro s, contenente il segmento avrà quindi equazione:
(Ho usato la formula della retta passante per un punto, con punto base e coefficicente angolare
).
Abbiamo quindi
ovvero
mentre la derivata parziale rispetto a s prende l’espressione
Per trovare l’equazione della nostra curva astroide dovremo quindi mettere a sistema le due equazioni:
e
Svolgendo i calcoli
Dalla seconda equazione otteniamo un’espressione per l’ascissa:
e sostituendo nella prima otteniamo
ovvero
In definitiva il punto R del nostro astroide, al variare di s avrà coordinate:
E incrociando le dita…
Per verificare se i nostri calcoli sono corretti, creiamo un punto R su Geogebra con tali coordinate e vediamo come si comporta rispetto all’Astroide:
#astroide #inviluppo #ellisse #bellafigura