Il teorema di Pitagora generalizzato – seconda parte

Riprendo l’ultimo post pubblicando per esteso la dimostrazione della formula per i triangoli ottusangoli. A seguire l’analogo teorema per i triangoli acutangoli e qualche considerazione finale sul collegamento con la trigonometria.

 

Immagine

pitagora ottusi formula

Dimostriamo la formula.

Consideriamo il triangolo rettangolo BCH formato dai vertici del lato maggiore BC e dall’altezza BH relativa al lato AC.

Si ha naturalmente, per il Teorema di Pitagora:

ottusi passaggio1

 

Ma per costruzione si ha

ottusi passaggio2

 

da cui, sostituendo nella formula precedente:

ottusi passaggio3

ottusi passaggio4

Ma il Teorema di Pitagora ci dice ancora che

ottusi passaggio5

e sostituendo quest’ultima relazione nell’ultimo passaggio, otteniamo infine la formula cercata:

pitagora ottusi formula

c.d.d.


Un pensiero su “Il teorema di Pitagora generalizzato – seconda parte

  1. Pingback: Da Brahmagupta a Erone … passando per Al-Kashi e Carnot! – ilripassinodimatematica

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.